The Internal Combustion Engine as a Low-Cost Soil Vapor Treatment Technology

Prepared by Steve R. Archabal
Remediation Service, Intl.,
a division of
Innovative Environmental Solutions, LLC

The data contained herein was previously published by Steven R. Archabal (June, 1997) while employed with Parsons Engineering Science, Inc. under contract with the Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division

Technology in Support of the Environment
Project Objectives

- AFCEE/ERT Demonstration Project
Project Objectives

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
Project Objectives

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
- Evaluate internal combustion engine (ICE) for SVE and off-gas treatment
Project Objectives

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
- Evaluate internal combustion engine (ICE) for SVE and off-gas treatment
- Develop site-specific and summary reports
Project Objectives

- AFCEE/ERT Demonstration Project
- Evaluate low-cost soil vapor extraction (SVE) technologies and strategies for treatment of petroleum hydrocarbons in soils
- Evaluate internal combustion engine (ICE) for SVE and off-gas treatment
- Develop site-specific and summary reports
- Compare ICE to traditional approaches
Demonstration Sites

Bolling AFB (November 1994)

Williams AFB (February 1997)
Davis-Monthan AFB (September 1995)
Conceptual Model of SVE using ICE

Contaminated Soil Vapors
ICE Principles of Operation

- Combines vapor extraction and contaminant vapor destruction in a single technology
ICE Principles of Operation

- Combines vapor extraction and contaminant vapor destruction in a single technology
- Uses a modified automobile engine with automated computer-monitored operation and emissions controls
ICE Principles of Operation

- Combines vapor extraction and contaminant vapor destruction in a single technology
- Uses a modified automobile engine with automated computer-monitored operation and emissions controls
- Catalytic converter completes fuel oxidation
ICE Principles of Operation

- Combines vapor extraction and contaminant vapor destruction in a single technology
- Uses a modified automobile engine with automated computer-monitored operation and emissions controls
- Catalytic converter completes fuel oxidation
- Remote monitoring options
ICE Technology - Features

- On-board computer to monitor engine performance
ICE Technology - Features

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
ICE Technology - Features

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
ICE Technology - Features

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
- Automated fire suppression system
ICE Technology - Features

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
- Automated fire suppression system
- No external power required
ICE Technology - Features

- On-board computer to monitor engine performance
- Automated air-fuel ratio control system
- Automated engine shutdown systems
- Automated fire suppression system
- No external power required
- Remote monitoring/operation capability
# ICE Technology Performance Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>V2C</th>
<th>V3</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Hydrocarbon Destruction Rate</td>
<td>12 lbs/hr</td>
<td>35 lbs/hr</td>
<td>70 lbs/hr</td>
</tr>
<tr>
<td>Destruction Efficiency for TVH / BTEX</td>
<td>&gt;99%</td>
<td>&gt;99%</td>
<td>&gt;99%</td>
</tr>
<tr>
<td>Engine Size</td>
<td>140 cid</td>
<td>460 cid</td>
<td>920 cid (2 x 460)</td>
</tr>
<tr>
<td>Max. Vapor Flow Rate</td>
<td>25 scfm</td>
<td>70 scfm</td>
<td>140 scfm</td>
</tr>
<tr>
<td>Max. Vacuum (Inches of Mercury / Water)</td>
<td>20 / 270</td>
<td>20 / 270</td>
<td>20 / 270</td>
</tr>
<tr>
<td>Soil Gas Hydrocarbon Concentration (ppmV as gasoline) required to eliminate supplemental fuel use</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
</tbody>
</table>
ICE Technology - Considerations

- Soil vapor extraction flow rate dependent on site conditions
ICE Technology - Considerations

- Soil vapor extraction flow rate dependent on site conditions
- Auxiliary fuel required (propane or natural gas) below optimum influent TVH vapor concentrations
ICE Technology - Considerations

- Soil vapor extraction flow rate dependent on site conditions
- Auxiliary fuel required (propane or natural gas) below optimum influent TVH vapor concentrations
- Bimonthly (twice per month) maintenance required
ICE Technology - Considerations

- Soil vapor extraction flow rate dependent on site conditions
- Auxiliary fuel required (propane or natural gas) below optimum influent TVH vapor concentrations
- Bimonthly (twice per month) maintenance required
- Can treat only low concentrations of chlorinated hydrocarbons
## Discharge Requirements

<table>
<thead>
<tr>
<th>Site</th>
<th>Average Daily TVH Emissions</th>
<th>Discharge Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis-Monthan AFB, Arizona</td>
<td>0.70 lb/day</td>
<td>2.4 lb VOCs/day</td>
</tr>
<tr>
<td>Luke AFB, Arizona</td>
<td>0.22 lb/day</td>
<td>3.0 lb VOCs/day</td>
</tr>
<tr>
<td>Bolling AFB, DC</td>
<td>0.84 lb/day</td>
<td>1.0 lb VOCs/day</td>
</tr>
<tr>
<td>Williams AFB, Arizona</td>
<td>1.28 lb/day</td>
<td>3.0 lb VOCs/day</td>
</tr>
</tbody>
</table>
# Site Descriptions

<table>
<thead>
<tr>
<th>Site</th>
<th>Geology</th>
<th>Depth to Groundwater</th>
<th>Maximum Soil TPH Concentration Range</th>
<th>Initial Estimated Contaminated Soil Volume</th>
<th>Initial Influent Vapor TVH Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis-Monthan AFB, Arizona</td>
<td>Intermixed fine and coarse-grained deposits</td>
<td>300 ft bgs</td>
<td>11,000 mg/kg (TRPH)</td>
<td>220,000 yd$^3$</td>
<td>43,000 ppmv</td>
</tr>
<tr>
<td>Luke AFB, Arizona</td>
<td>Intermixed fine and coarse-grained deposits</td>
<td>320 ft bgs</td>
<td>12,000 mg/kg</td>
<td>9,300 yd$^3$</td>
<td>38,500 ppmv</td>
</tr>
<tr>
<td>Bolling AFB, DC</td>
<td>Intermixed fine and coarse-grained deposits</td>
<td>20 ft bgs</td>
<td>42,000 mg/kg</td>
<td>43,000 yd$^3$</td>
<td>123,000 ppmv</td>
</tr>
<tr>
<td>Williams AFB, Arizona</td>
<td>Fine-grained subunits intermixed with coarse-grained beds</td>
<td>200 ft bgs</td>
<td>35,000 mg/kg</td>
<td>100,000 yd$^3$</td>
<td>140,000 ppmv</td>
</tr>
<tr>
<td>Site</td>
<td>Average Daily TVH Removal Rate</td>
<td>Weighted Average</td>
<td>Influent TVH Concentrations</td>
<td>Davis-Month</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Davis-Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ICE Performance

![Graph showing ICE performance at various AFBs over days of operation since start-up. The graph plots pounds TVH on the y-axis and days of operation since start-up on the x-axis. The AFBs compared are Davis-Monthan AFB, Williams AFB, Luke AFB, and Bolling AFB.](image)
Air Emissions

![Graph showing Air Emissions over Days of Operation Since Start-Up]

- Williams AFB
- Bolling AFB
- Davis-Monthan AFB
- Luke AFB

> 99.8% Average Destruction Efficiency
Cost of Treatment

![Graph showing the cost of treatment over days of operation since start-up for Bolling AFB, Luke AFB, Williams AFB, and Davis-Monthan AFB.](image)
Full-Scale Performance

- Over 500,000 Pounds of Jet Fuel removed in 240 days
Full-Scale Performance

- Over 500,000 Pounds of Jet Fuel removed in 240 days
- 99.9% Destruction Consistently Achieved
Full-Scale Performance

- Over 500,000 Pounds of Jet Fuel removed in 240 days
- 99.9% Destruction Consistently Achieved
- No exceedance of 2.4 lb/day air emissions limit
O&M Requirements & Costs

- Weekly system checks
O&M Requirements & Costs

- Weekly system checks
- Monthly engine service
O&M Requirements & Costs

- Weekly system checks
- Monthly engine service
- Monthly emissions sampling
O&M Requirements & Costs

- Weekly system checks (Recommended)
- Bimonthly engine service
- Monthly emissions sampling
- Propane delivery
FIGURE 3.6
COST COMPARISON AS A FUNCTION OF INFLUENT CONCENTRATION

ICE Demonstration
Comprehensive Technical Report

PARSONS ENGINEERING SCIENCE, INC.
Denver, Colorado

ASSUMPTIONS:
1. See Appendix C.
2. Well gas flow rate approximately 100 cfm.
Conclusions

- ICE technology easily integrated with traditional SVE systems
Conclusions

- ICE technology easily integrated with traditional SVE systems
- Capable of achieving stringent discharge limitations (> 99.9% destruction efficiency)
Conclusions

- ICE technology easily integrated with traditional SVE systems
- Capable of achieving stringent discharge limitations (> 99.9% destruction efficiency)
- Cost per pound of TVH removed: $0.04 to $0.46
"....ICE technology is similar to that of thermal and catalytic oxidation when influent concentrations range between 3,000 to 5,000 ppmv TVH. Above these concentrations, ICE technology becomes more cost-effective.”*

Contact Information

Remediation Service, Int’l
4835 Colt Street, Unit D
Ventura, CA 93003

email: rsi@rsi-save.com
www.rsi-save.com
Tel. 805-644-8382
Fax 805-644-8378